Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Infect Genet Evol ; 118: 105564, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38307396

RESUMO

This pilot study aimed to investigate genetic factors that may have contributed to the milder clinical outcomes of COVID-19 in Brazilian indigenous populations. 263 Indigenous from the Araweté, Kararaô, Parakanã, Xikrin do Bacajá, Kayapó and Munduruku peoples were analyzed, 55.2% women, ages ranging from 10 to 95 years (average 49.5 ± 20.7). Variants in genes involved in the entry of SARS-CoV-2 into the host cell (ACE1 rs1799752 I/D, ACE2 rs2285666 C/T, ACE2 rs73635825 A/G and TMPRSS2 rs123297605 C/T), were genotyped in indigenous peoples from the Brazilian Amazon, treated during the SARS-CoV-2 pandemic between 2020 and 2021. The distribution of genotypes did not show any association with the presence or absence of IgG antibodies. Additionally, the influence of genetic variations on the severity of the disease was not examined extensively because a significant number of indigenous individuals experienced the disease with either mild symptoms or no symptoms. It is worth noting that the frequencies of risk alleles were found to be lower in Indigenous populations compared to both continental populations and Brazilians. Indigenous Brazilian Amazon people exhibited an ethnic-specific genetic profile that may be associated with a milder disease, which could explain the unexpected response they demonstrated to COVID-19, being less impacted than Brazilians.


Assuntos
COVID-19 , Peptidil Dipeptidase A , Serina Endopeptidases , Feminino , Humanos , Masculino , Enzima de Conversão de Angiotensina 2/genética , Brasil/epidemiologia , COVID-19/epidemiologia , COVID-19/genética , Peptidil Dipeptidase A/genética , Projetos Piloto , SARS-CoV-2/fisiologia , Serina Endopeptidases/genética , Índios Sul-Americanos
2.
Front Aging Neurosci ; 15: 1138336, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37255536

RESUMO

Alzheimer's Disease (AD) is an irreversible neurodegenerative disease clinically characterized by the presence of ß-amyloid plaques and tau deposits in various regions of the brain. However, the underlying factors that contribute to the development of AD remain unclear. Recently, the fusiform gyrus has been identified as a critical brain region associated with mild cognitive impairment, which may increase the risk of AD development. In our study, we performed gene co-expression and differential co-expression network analyses, as well as gene-expression-based prediction, using RNA-seq transcriptome data from post-mortem fusiform gyrus tissue samples collected from both cognitively healthy individuals and those with AD. We accessed differential co-expression networks in large cohorts such as ROSMAP, MSBB, and Mayo, and conducted over-representation analyses of gene pathways and gene ontology. Our results comprise four exclusive gene hubs in co-expression modules of Alzheimer's Disease, including FNDC3A, MED23, NRIP1, and PKN2. Further, we identified three genes with differential co-expressed links, namely FAM153B, CYP2C8, and CKMT1B. The differential co-expressed network showed moderate predictive performance for AD, with an area under the curve ranging from 0.71 to 0.76 (+/- 0.07). The over-representation analysis identified enrichment for Toll-Like Receptors Cascades and signaling pathways, such as G protein events, PIP2 hydrolysis and EPH-Epherin mechanism, in the fusiform gyrus. In conclusion, our findings shed new light on the molecular pathophysiology of AD by identifying new genes and biological pathways involved, emphasizing the crucial role of gene regulatory networks in the fusiform gyrus.

3.
J Pers Med ; 12(6)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35743738

RESUMO

Given the role of pharmacogenomics in the large variability observed in drug efficacy/safety, an assessment about the pharmacogenomic profile of patients prior to drug prescription or dose adjustment is paramount to improve adherence to treatment and prevent adverse drug reaction events. A population commonly underrepresented in pharmacogenomic studies is the Native American populations, which have a unique genetic profile due to a long process of geographic isolation and other genetic and evolutionary processes. Here, we describe the pharmacogenetic variability of Native American populations regarding 160 pharmacogenes involved in absorption, distribution, metabolism, and excretion processes and biological pathways of different therapies. Data were obtained through complete exome sequencing of individuals from 12 different Amerindian groups of the Brazilian Amazon. The study reports a total of 3311 variants; of this, 167 are exclusive to Amerindian populations, and 1183 are located in coding regions. Among these new variants, we found non-synonymous coding variants in the DPYD and the IFNL4 genes and variants with high allelic frequencies in intronic regions of the MTHFR, TYMS, GSTT1, and CYP2D6 genes. Additionally, 332 variants with either high or moderate (disruptive or non-disruptive impact in protein effectiveness, respectively) significance were found with a minimum of 1% frequency in the Amazonian Amerindian population. The data reported here serve as scientific basis for future design of specific treatment protocols for Amazonian Amerindian populations as well as for populations admixed with them, such as the Northern Brazilian population.

4.
Biomedicines ; 10(4)2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35453630

RESUMO

Nuclear DNA has been the main source of genome-wide loci association in neurodegenerative diseases, only partially accounting for the heritability of Alzheimer's Disease (AD). In this context, mitochondrial DNA (mtDNA) is gaining more attention. Here, we investigated mitochondrial genes and genetic variants that may influence mild cognitive impairment and AD, through an integrative analysis including differential gene expression and mitochondrial genome-wide epistasis. We assessed the expression of mitochondrial genes in different brain tissues from two public RNA-Seq databases (GEO and GTEx). Then, we analyzed mtDNA from the ADNI Cohort and investigated epistasis regarding mitochondrial variants and levels of Aß1-42, TAU, and Phosphorylated TAU (PTAU) from cognitively healthy controls, and both mild cognitive impairment (MCI) and AD cases. We identified multiple differentially expressed mitochondrial genes in the comparisons between cognitively healthy individuals and AD patients. We also found increased protein levels in MCI and AD patients when compared to healthy controls, as well as novel candidate networks of mtDNA epistasis, which included variants in all mitochondrially-encoded oxidative phosphorylation complexes, 12S rRNA and MT-DLOOP. Our results highlight layers of potential interactions involving mitochondrial genetics and suggest specific molecular alterations as potential biomarkers for AD.

5.
Biology (Basel) ; 11(4)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35453737

RESUMO

ClinVar is a web platform that stores ∼789,000 genetic associations with complex diseases. A partial set of these cataloged genetic associations has challenged clinicians and geneticists, often leading to conflicting interpretations or uncertain clinical impact significance. In this study, we addressed the (re)classification of genetic variants by AmazonForest, which is a random-forest-based pathogenicity metaprediction model that works by combining functional impact data from eight prediction tools. We evaluated the performance of representation learning algorithms such as autoencoders to propose a better strategy. All metaprediction models were trained with ClinVar data, and genetic variants were annotated with eight functional impact predictors cataloged with SnpEff/SnpSift. AmazonForest implements the best random forest model with a one hot data-encoding strategy, which shows an Area Under ROC Curve of ≥0.93. AmazonForest was employed for pathogenicity prediction of a set of ∼101,000 genetic variants of uncertain significance or conflict of interpretation. Our findings revealed ∼24,000 variants with high pathogenic probability (RFprob≥0.9). In addition, we show results for Alzheimer's Disease as a demonstration of its application in clinical interpretation of genetic variants in complex diseases. Lastly, AmazonForest is available as a web tool and R object that can be loaded to perform pathogenicity predictions.

6.
Pharmacogenomics ; 23(4): 225-233, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35042408

RESUMO

Aim: To explore the pharmacogenetic differentiation across Latin American populations, using the fixation index statistics (FST). Materials & methods: FST analyses were applied to 1519 pharmacogenetic markers in the 1000 Genomes admixed American superpopulation (1KG_AMR) and an admixed Brazilian sample. Results: Allele-specific FST values for the overall cohort point to little overall pharmacogenetic differentiation (average FST = 0.017); however, moderate differentiation (FST = 0.05-0.15) was observed for 83 markers, while large differentiation (FST = 0.15-0.25) was restricted to three markers. Pairwise FST analysis identified three markers with very large differentiation (FST >0.25). Conclusion: The present study verifies and extends previous reports of little overall pharmacogenetic divergence across Latin America, although a number of markers display substantial differentiation.


Assuntos
Genética Populacional , Humanos , América Latina
7.
Sci Rep ; 11(1): 1007, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441860

RESUMO

We evaluated the performance of three PGx panels to estimate biogeographical ancestry: the DMET panel, and the VIP and Preemptive PGx panels described in the literature. Our analysis indicate that the three panels capture quite well the individual variation in admixture proportions observed in recently admixed populations throughout the Americas, with the Preemptive PGx and DMET panels performing better than the VIP panel. We show that these panels provide reliable information about biogeographic ancestry and can be used to guide the implementation of PGx clinical decision-support (CDS) tools. We also report that using these panels it is possible to control for the effects of population stratification in association studies in recently admixed populations, as exemplified with a warfarin dosing GWA study in a sample from Brazil.


Assuntos
Genoma Humano/genética , Polimorfismo de Nucleotídeo Único/genética , América , Brasil , Genética Populacional/métodos , Estudo de Associação Genômica Ampla/métodos , Humanos , Farmacogenética/métodos
8.
Biology (Basel) ; 9(9)2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32872134

RESUMO

Mild cognitive impairment (MCI) and Alzheimer's Disease (AD) are complex diseases with their molecular architecture not elucidated. APOE, Amyloid Beta Precursor Protein (APP), and Presenilin-1 (PSEN1) are well-known genes associated with both MCI and AD. Recently, epigenetic alterations and dysregulated regulatory elements, such as microRNAs (miRNAs), have been reported associated with neurodegeneration. In this study, differential expression analysis (DEA) was performed for genes and miRNAs based on microarray and RNA-Seq data. Global gene profile of healthy individuals, early and late mild cognitive impairment (EMCI and LMCI, respectively), and AD was obtained from ADNI Cohort. miRNA global profile of healthy individuals and AD patients was extracted from public RNA-Seq data. DEA performed with limma package on ADNI Cohort data highlighted eight differential expressed (DE) genes (AGER, LINC00483, MMP19, CATSPER1, ARFGAP1, GPER1, PHLPP2, TRPM2) (false discovery rate (FDR) p-value < 0.05) between EMCI and LMCI patients. Previous molecular studies showed associations between these genes with dementia and neurological-related pathways. Five dysregulated miRNAs were identified by DEA performed with RNA-Seq data and edgeR (FDR p-value < 0.002). All reported miRNAs in AD interact with the aforementioned genes. Our integrative transcriptomic analysis was able to identify a set of miRNA-gene interactions that may be involved in cognitive and neurodegeneration processes.

9.
BMJ Open Gastroenterol ; 7(1): e000371, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32337060

RESUMO

Background: In recent years, deep learning has gained remarkable attention in medical image analysis due to its capacity to provide results comparable to specialists and, in some cases, surpass them. Despite the emergence of deep learning research on gastric tissues diseases, few intensive reviews are addressing this topic. Method: We performed a systematic review related to applications of deep learning in gastric tissue disease analysis by digital histology, endoscopy and radiology images. Conclusions: This review highlighted the high potential and shortcomings in deep learning research studies applied to gastric cancer, ulcer, gastritis and non-malignant diseases. Our results demonstrate the effectiveness of gastric tissue analysis by deep learning applications. Moreover, we also identified gaps of evaluation metrics, and image collection availability, therefore, impacting experimental reproducibility.


Assuntos
Aprendizado Profundo , Gastrite , Radiologia , Humanos , Radiografia , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...